SURFICIAL DEPOSITS

Manmade fill

Intermixed gravel, sand, cobbles, and some boulders and broken rock including riprap; some refuse and garbage. Generally loose. Maximum thickness probably 30 ft. Overlies alluvial and deltaic deposits. Stippled pattern, mostly refuse and garbage

Alluvial deposits of the Skagway River

Gravel, sand, and some cobbles, boulders, and silt. Loose, well bedded; some beds well sorted. Stones generally subrounded. Ranges in thickness from 15 to 35 ft and averages 25 ft. Overlain irregularly by patches of manmade fill too small or thin to map. Grades shoreward into deltaic deposits (Qi). Commonly underlain by sand and some fine gravel, possibly the offshore part of former delta Qam, modern flood-plain alluvium Qat, terrace alluvium. Surface 5-10 ft higher than Qam

Beach deposits

Chiefly cobbles, gravel, sand, and boulders; some concentrations of shell fragments and driftwood. Gravel and cobbles generally subrounded. Loose and well sorted locally. Thickness probably 5 to 10 ft. Overlies bedrock

Deltaic deposits of the intertidal zone

Sandy gravel, gravelly sand, and cobbles; some small boulders, shell fragments, sand and silt. Stones mostly subrounded. Loose to dense. Sorting generally good. Ranges in thickness from about 10 to 50 ft and averages 30 ft. Overlies sand or sand and fine gravel of offshore part of earlier delta. Overlain locally by thin manmade fill. Grades onshore into alluvial deposits. Grades offshore into unmapped sediments of the delta front

Alluvial fan deposits

Sandy gravel, cobbles, and some boulders; locally sand, some silt, and organic material. Stones subangular to angular. Generally loose; poorly sorted and poorly stratified. Coalescing of fans near Icy Lake and Lower Dewey Lake. Maximum thickness probably as much as 50 ft. Some grade into colluvial deposits. Overlies bedrock and possibly drift

Qci

Colluvial deposits

Mixtures of: (1) cobble- to boulder-sized rubble in a sandy to gravelly silt matrix, or (2) gravel, cobbles, sand, and some silt and clay: locally may contain high percent of silt and organic material. Stones generally angular, some subrounded. Generally loose and unsorted material that has moved downslope or is moving downslope under the influence of gravity. Some crude bedding. Possibly as much as 50 ft thick; locally discontinuous. Overlies bedrock and possibly drift. Composed of talus and various types of landslide deposits, probably including rockfalls, rockslides, earthflows, and avalanche debris; locally includes glacial drift and possibly elevated marine and beach deposits (see note 4). Grades into alluvial Qca, actively accumulating and probably creeping downslope; locally

composed of boulder-sized rubble; mostly unvegetated Qci, presumably inactive, but in part may be creeping downslope; thickly vegetated

Glacial drift deposits

Consists of: (1) till, a mixture of unsorted, unstratified, loose to compact gravelly silt, sand, and some clay, cobbles, and boulders; or (2) stratified drift, generally sorted and stratified, loose, gravelly sand, sand, and minor amounts of cobbles. Stones subrounded to subangular. Thickness probably less than 20 ft; locally discontinuous. Overlies bedrock. May be overlain by colluvium or elevated marine and beach deposits (see note 4) too small to map

Mostly medium gray, medium-grained quartz diorite and granodiorite; includes some basalt and aplite dikes, and some metamorphic rocks, chiefly schist, phyllite, gneiss, marble, and quartzite. Normally hard and massive, but locally quartz diorite and granodiorite are fragmented and weathered to depths of as much as 20 ft. Overlain locally by colluvial, alluvial, drift, and possibly elevated marine and beach deposits (see note 4) too small to map

(2) Map units shown are considered to be comprised of materials at least 5 ft thick. (3) Surficial deposits and bedrock may be covered by a few feet of silty organic material. (4) At altitudes within several hundred ft of sea level, small remnants of elevated fine-grained marine deposits and coarse-grained beach deposits of Pleistocene and Holocene age may be present. (5) Grain-size classification used is as follows: clay, less than .00015 in.; silt, .00015-.0025 in.; sand, .0025-.079 in.; gravel, .079 to about 2 1/2 in.; cobbles, about 2 1/2 to 10 in.; boulders, greater than 10 in. (Natl. Research Council, 1947)

Gravel, sand, or fragmented-rock pit

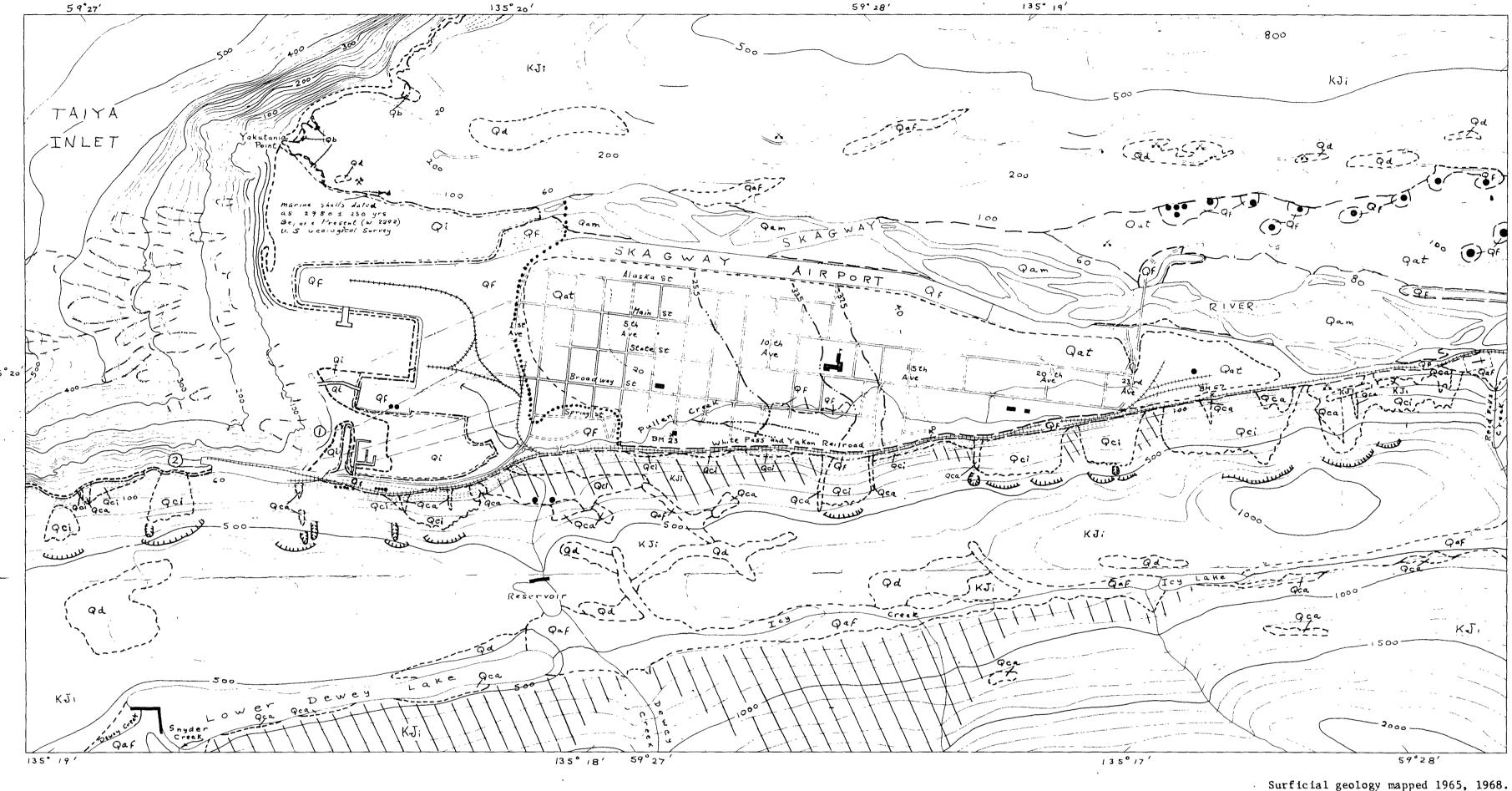
Storage tanks, water or petroleum products (representational)

Building, wharf or dock (representational)

----- Mean lower low water (lower limit of mapping)

Centerline of former wharf, now removed

------ Supplemental contour segment, datum mean sea level (modified from Hubbell and Waller, 1953)


Margin of possible subaqueous slide, based upon interpreta-

Escarpment near rim of valley wall; general locality possibly susceptible to future rockfalls and earthflows

Area of large inferred landslides (airphoto interpretation

Approximate area of inferred subaqueous slide in 1899

Approximate area of subaqueous slide in 1966



MAGNETIC NORTH APPROXIMATE MEAN

DECLINATION, 1949

Base developed from maps, surveys, and charts by: U.S. Geological Survey, Skagway B-1 quadrangle 1963; U.S. Coast and Geodetic Survey Hydrographic Surveys H-6945 and H-6946, 1943, and U.S. National Ocean Survey Chart 8303, 1971

SCALE 1:9 600 800 400 0 400 800 1200 1600 FEET 200 100 · 0 100 200 300 400 METERS

Land contour interval 100 feet, dashed supplemental interval 20 feet (below 100 feet alt only); datum-mean sea level. Bathymetric contour interval 20 feet datum--mean lower low water. Diurnal tidal range 16.7 feet

Bedrock geology after Barker (1952) and Christie (1959)

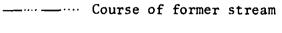
U.S. Geological Survey OPEN FILE REPORT This map is preliminary and has not been edited or reviewed for conformity with Geological Survey standards or nomenclature.

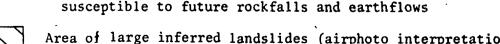
FIGURE 5.-RECONNAISANCE GEOLOGIC MAP OF SKAGWAY AND VICINITY, ALASKA

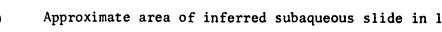
EXPLANATION

Intrusive rocks

Notes: (1) Mean lower low waterline is the lower limit of mapping.


dashed where inferred or gradational


•••••• Higher high waterline about 1897


---- Mean higher high water



tion of data from U.S. Coast and Geodetic Survey (1943)





